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Below, we briefly report on the progress in the development of the Filter Diago-
nalization technique when filtering is carried out with the aid of Finite Fourier Trans-
form (FFT) eigenfunctions. During recent years interest in these functions, also known
as ‘prolates’, or ‘slepians’, has increased among scientists doing research in the field
of signal processing. The main explanation to this follows from the set of very spe-
cial extremal and orthogonality properties exibited by the FFT eigenfunctions. Recent
results of Walter and Shen on sampling with prolate spheroidal functions will necessary
produce a new wave of interest. In the presented, Filter diagonalization machinery, we
show that the sampling formula of Walter and Shen simplifies essentially the computa-
tion of matrix elements as certain 2D–integrals involving FFT eigenfunctions.
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1. Introduction

It is well-known by now that signal and image processing mainly devel-
oped in applied sciences and engineering have much in common with the basic
description of quantum mechanics and quantum chemistry. The recently devel-
oped procedure of Filter Diagonalization is such a typical example when the
spectral information, extracted from the dynamics of a quantum system, directly
mimics general procedures and implementations of high-resolution signal and
image processing. In the present contribution, we report on the recent develop-
ment of the filter diagonalization technique with implication for methods and
computations in quantum chemistry.
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The Filter Diagonalization Technique was first introduced with particular
reference to problems in quantum chemistry by Neuhauser and coworkers [1–3].
Significant developments by Mandelshtam and Taylor [4] and many others have
now become among the most commonly used methods for solving spectral prob-
lems in quantum dynamics.

2. Filter diagonalization

Filter diagonalization is a method to investigate the detailed spectrum of an
operator (Hamiltonian) Ĥ at a selected energy range. The spectral information is
directly extracted from a short (−T � t � T ) segment of the auto-correlation
function C(t) = 〈ϕ(�x, 0)|ϕ(�x, t)〉 = 〈ϕ(�x, 0)|e−i Ĥ t |ϕ(�x, 0)〉 associated with a given
wave packet ϕ(�x, t) subject to the time–dependent Schrödinger equation:

∂ϕ

∂t
(�x, t) = −i Ĥϕ(�x, t).

To filter the auto-correlation function C(t), implies filtering the functional
space on which Ĥ is acting. For a purely discrete spectrum, one extracts a sub-
space spanned by the eigenfunctions corresponding to the eigenvalues situated
within the considered energy interval. Note that the filtering procedure is gener-
ally not exact, since contributions from eigenvectors associated with eigenvalues
outside this interval are suppressed rather than eliminated completely.

3. Filtering with prolates

In Ref. [5], we have discussed the advantages of using the Finite Fourier
Transform (FFT) eigenfunctions as tapering windows for the filtering procedure.
The exclusive properties of FFT eigenfunctions have been widely discussed since
the original paper [6] appeared, in particular, we refer to Ref. [7–9] for more
details. The main advantage of using FFT eigenfunctions is that such filtering
is exact, resulting in a system of non-linear equations reduced to treating only
eigenvalues located within the prescribed interval

[
ω∗ − �, ω∗ + �

]
:

∑

ωk∈(ω∗−�,ω∗+�)

|dk |2θl(ω
∗ − ωk) = (−1)l µl

2π

√
�

T

∞∫

−∞
e−iω∗t C(t) �l(t) dt .

Above ωk is an eigenvalue of the Hamiltonian Ĥ ; θl(t) and �l(t) are FFT eigen-
functions, scaled and squeezed to become �-band-limited and T –concentrated,
i.e.
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F[θl(ω)] = (−1)lµl

√
�

T
�l(t),

F−1[θl(ω)] = µl

2π

√
�

T
�l(t),

further, [−T, T ] is the interval at which the wave packet propagation is known,
and finally µl is the associated FFT eigenvalue.

Having filtered the Hilbert space of quantum states, we obtain the ‘eigen
subspace’ of the hamiltonian Ĥ associated with the interval

[
ω∗ −�, ω∗ +�

]
. In

this reduced ‘eigen subspace’ the eigenvalue problem for Ĥ takes the form

U�bk = ωkW�bk,

where U and W are finite matrices with entries being 2D integrals involving the
the auto-correlation function and the tapering functions �l(t):

Usl = (−1)s+l �µsµl

4π2T

∫ ∞

−∞

∫ ∞

−∞
eiω∗(t−τ)c(t − τ)�s(t)

{
ω∗�l(τ )−i

d�l (τ )

dτ

}
dτ dt

(1)

Wsl = (−1)s+l �µsµl

4π2T

∫ ∞

−∞

∫ ∞

−∞
eiω∗(t−τ) c(t − τ)�s(t) �l(τ ) dτ dt .

The idea to reformulate the original spectral problem to that of lin-
ear algebra, has been proposed earlier, (see e.g, [10]). The procedure looks
very attractive, particularly since a preliminary computation employs only the
auto-correlation function and does not require values of the original propagating
wave packet. The approach discussed in Ref. [10] leads, however, to an almost
degenerate matrix, and if the grid in the spectral interval is made finer, the
degeneracy effect becomes stronger. This drawback follows from the fact that the
Fourier basis, in which the matrix elements are computed, consists of almost lin-
early dependent functions. They are subsequently computed as the Fourier trans-
form of the wave–packet propagation by shifting the spectral parameter to a
neighbouring grid point and enumerating basis functions with this shifts.

Employing instead different filtering windows, we can remedy the above
mentioned degeneracy problem. Thus we obtain a sufficient number of basis
functions from the wave–packet Fourier transform, computed with various taper-
ing functions at the same value of spectral parameter.

4. Sampling with prolates

In spite of the drawback mentioned above, the Mandelstam’s procedure in
Ref. [10] is clear and easily coded, while the necessity to integrate the auto-corre-
lation function, weighted with a convolution of two FFT eigenfunctions in Ref.
[5], made our present approach less promising.
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The sampling formulas obtained in Ref. [7,8] have resolved this problem.
The key to such a kind of formulas lies in the generalization of the famous
Whittaker–Nyquist–Kotelnikov-Shannon sampling theorem. The theorem states
that any band–limited function f (x) ∈ L2(−∞, +∞) (i.e., function whose
Fourier transform is of finite support) may be completely recovered from its
equally spaced samples. Originally, for interpolation of these function, sinc–func-
tion translates have been used. However, although formally converging, expan-
sions in terms of the sinc–function converge in practice very slowly. On the
contrary the relevant expansions in terms of eigenfunctions of FFT converge
considerably faster then the classical series of Shannon and others. A relatively
high accuracy can now be achieved with only a few equally spaced samples and
few eigenfunctions. Thus, if f is π–bandlimited and τ is the ‘interval of concen-
tration’

f (t) ≈
2[τ ]∑

n=0



 f (m)

[τ ]∑

m=−[τ ]
�n(πτ, m)



 �n(πτ, t),

where �n(πτ, t) is the π–band limited, τ–concentrated FFT eigenfunction.
One can use these expressions to interpolate the internal integrals in the

right-hand sides of (1):

ζsl(t) =
∫ ∞

−∞
�s(t + τ)

{
ω∗�l(τ ) − i

d�l (τ )

dτ

}
dτ ,

ϒsl(t) =
∫ ∞

−∞
�s(t + τ) �l(τ )dτ ;

These convolutions are also �-band-limited, since �s(t) and �l(t) have this
property.

5. Computational recipe

Thus the final recipe of our calculation of the matrix elements Usl, Wsl is:
(i) first to compute a few (namely, 2�T

π
) equally spaced values ζsl(tk), and ϒsl(tk),

then (ii) using these samples to interpolate the functions ζsl(t), ϒsll(t) everywhere
on [−T, T ] and (iii) to compute the remaining integrals

Usl =(−1)l+s

4π2
µl µs

�

T

∫ ∞

−∞
eiω∗t c(t)ζsl(t) dt,

Wsl =(−1)l+s

4 π2
µl µs

�

T

∫ ∞

−∞
eiω∗t c(t)ϒsl(t) dt .

Before, the necessity to compute the integrals over an infinite interval has
not been discussed. Obviously, we have to truncate the infinite integration inter-
val to a finite one in the computations. Here the magic property of the FFT
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eigenfunctions namely of being mostly concentrated at the interval [-T,T] (see [5])
should be used. On can prove, in particular, that

∫ ∞

−∞
| f (t)�s(�T, t)|2 dt −

∫ T

−T
| f (t)�s(�T, t)|2 dt � A

1 − |µs |2
|µs |2 ,

with the constant A depending on the function f (t). For s <
2�T

π
the value

|µs |2 ≈ 1 up to a very high accuracy.
An accurate and efficient numerical technique for the evaluation of the FFT

eigenfunction, as well as for computating various functionals of them (e.g., the
matrix elements Usl, Wsl) is considered in Ref. [11] and references therein.

A more detailed consideration will be presented elsewhere [12].
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